Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein

نویسندگان

  • Szymon Żerko
  • Piotr Byrski
  • Paweł Włodarczyk-Pruszyński
  • Michał Górka
  • Karin Ledolter
  • Eliezer Masliah
  • Robert Konrat
  • Wiktor Koźmiński
چکیده

New experiments dedicated for large IDPs backbone resonance assignment are presented. The most distinctive feature of all described techniques is the employment of MOCCA-XY16 mixing sequences to obtain effective magnetization transfers between carbonyl carbon backbone nuclei. The proposed 4 and 5 dimensional experiments provide a high dispersion of obtained signals making them suitable for use in the case of large IDPs (application to 354 a. a. residues of Tau protein 3x isoform is presented) as well as provide both forward and backward connectivities. What is more, connecting short chains interrupted with proline residues is also possible. All the experiments employ non-uniform sampling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Six- and seven-dimensional experiments by combination of sparse random sampling and projection spectroscopy dedicated for backbone resonance assignment of intrinsically disordered proteins

Two novel six- and seven-dimensional NMR experiments are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in four indirectly detected dimensions and synchronous sampling in the additional dimensions using projection spectroscopy principle. The resulted data sets could be processed as five-dimensional data using existing software. The experiments f...

متن کامل

A six-dimensional alpha proton detection-based APSY experiment for backbone assignment of intrinsically disordered proteins.

Sequence specific resonance assignment is the prerequisite for the NMR-based analysis of the conformational ensembles and their underlying dynamics of intrinsically disordered proteins. However, rapid solvent exchange in intrinsically disordered proteins often complicates assignment strategies based on HN-detection. Here we present a six-dimensional alpha proton detection-based automated projec...

متن کامل

High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins

Four novel 5D (HACA(N)CONH, HNCOCACB, (HACA)CON(CA)CONH, (H)NCO(NCA)CONH), and one 6D ((H)NCO(N)CACONH) NMR pulse sequences are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in indirectly detected dimensions. The experiments facilitate resonance assignment of intrinsically disordered proteins. The novel pulse sequences were successfully tested ...

متن کامل

Pseudo 5D HN(C)N Experiment to Facilitate the Assignment of Backbone Resonances in Proteins Exhibiting High Backbone Shift Degeneracy

Assignment of protein backbone resonances is most routinely carried out using triple resonance three dimensional NMR experiments involving amide 1 H and 15 N resonances. However for intrinsically unstructured proteins, alpha-helical proteins or proteins containing several disordered fragments, the assignment becomes problematic because of high degree of backbone shift degeneracy. In this backdr...

متن کامل

A Primer for Carbon-Detected NMR Applications to Intrinsically Disordered Proteins in Solution

Characterization of intrinsically disordered proteins (IDPs) has grown tremendously over the past two decades. NMR-based structural characterization has been widely embraced by the IDP community, largely because this technique is amenable to highly flexible biomolecules. Particularly, carbon-detect nuclear magnetic resonance (NMR) experiments provide a straight forward and expedient method for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2016